中国电子技术网

设为首页 网站地图 加入收藏

 
  • 首页 >  ADIADI >>ADUCM320: Precision Analog Microcontroller, 14-Bit Analog I/O with MDIO Interface, ARM Cortex-M3

ADUCM320: Precision Analog Microcontroller, 14-Bit Analog I/O with MDIO Interface, ARM Cortex-M3

描述:The ADuCM320 is a fully integrated single package device that incorporates high performance analog peripherals together with digital peripherals controlled by an 80 MHz ARM® Cortex™-M3 processor and integral flash for code and data. The ADC on the ADuCM320 provides 14-bit, 1 MSPS data acquisition on up to 16 input pins that can be programmed for single-ended or differential operation. The voltage at the IDAC output pins may also be measured by the ADC, which is useful for controlling the power consumption of the current DACs. Additionally, chip temperature and supply voltages can be measured. The ADC input voltage is 0 V to VREF. A sequencer is provided, which allows a user to select a set of ADC channels to be measured in sequence without software involvement during the sequence. The sequence can optionally repeat automatically at a user selectable rate. Up to eight VDACs are provided with output ranges that are programmable to one of two voltage ranges. The VDAC outputs have an enhanced feature of retaining their output voltages during a watchdog or software reset sequence. Four IDAC sources are provided. The output currents are programmable with ranges of 0 mA to 150 mA. A low drift band gap reference and voltage comparator complete the analog input peripheral set. The ADuCM320 has a low power ARM Cortex-M3 processor and a 32-bit RISC machine that offers up to 100 MIPS peak performance. Also integrated on chip are 2 × 128 kB Flash/EE memory and 32 kB of SRAM. The flash comprises of two separate 128 kB blocks supporting execution from one flash block and simultaneous writing/erasing of the other flash block. The ADuCM320 operates from an on-chip oscillator or a 16 MHz external crystal and a PLL at 80 MHz. This clock can optionally be divided down to reduce current consumption. Additional low power modes can be set via software. In normal operating mode, the ADuCM320 digital core consumes about 300 µA per MHz. The device includes an MDIO interface capable of operating at up to 4 MHz. The capability to simultaneously execute from one flash block and write/erase the other flash block makes the ADuCM320 ideal for 10G, 40G, and 100G optical applications. User programming is eased by receiving interrupts after PHYADR, DEVADD, and end of frame, and by incorporating PHYADR and DEVADD hardware comparators. In addition, the nonerasable kernel code plus flags in user flash provide assistance by allowing user code to robustly switch between the two blocks of user flash code and data spaces, as required for MDIO. The ADuCM320 integrates a range of on-chip peripherals that can be configured under software control, as required in the application. These peripherals include 1 × UART, 2 × I2C, and 2 × SPI serial I/O communication controllers, GPIO, 32-element programmable logic array, 3 general-purpose timers, plus a wake-up timer and system watchdog timer. A 16-bit PWM with seven output channels is also provided. GPIO pins on the device power up in input mode with an internal pull-up resistor. In output mode, the software chooses between open-drain mode and push-pull mode. The outputs can drive at least 4 mA. The pull-up resistors can be disabled and enabled in software. In GPIO mode, the inputs can be enabled to monitor the pins. The GPIO pins can also be programmed to handle digital or analog peripheral signals, in which case the pin characteristics are matched to the specific requirement. A large support ecosystem is available for the ARM Cortex-M3 processor to ease product development of the ADuCM320. Access is via the ARM serial wire debug port (SW-DP). On-chip factory firmware supports in-circuit serial download via MDIO.
下载地址: http://www.analog.com/en/processors-dsp/analog-microcontrollers/aducm320/products/product.html
  • 在云加速应用当中集成 AI 功能 FPGA 用作高度自适应和高效的加速器的势头越来越强劲。亚马逊,阿里巴巴和百度等一些最大的公共云已经开始提供 FPGA 功能,用来加速视频和图像处理、数据分析、基因组学、安全和金融计算等领域在云端的应用...... Xilinx     2018年06月21日     预先登记

    多物理场数值仿真助力锂离子电池研发 本次活动将介绍如何通过基于电化学原理的多物理场数值仿真,对锂离子电池的性能,热管理,滥用,应力变形等方面进行数值分析和预测。 使用 COMSOL 软件不仅能够对电池充/放电曲线、SOC 曲线、不同放电倍率下的电池容量、内阻、极化、电池老化等性能问题进行分析...... COMSOL     2018年06月26日     注册 预先提问

    户外照明应用发展趋势及欧司朗最新产品和技术方案 本次研讨会主要针对户外照明应用发展趋势,介绍欧司朗光电半导体在户外照明领域的最新LED产品和技术方案,详细介绍了欧司朗光电半导体LED针对户外照明应用的产品优势。基于应用对于光效、可靠性以及成本的需求...... OSRAM     2018年07月10日     注册 预先提问